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ABSTRACT 

Musical pitch estimation is a core task in the fields of mu-
sic information retrieval (MIR) and speech analysis. In re-
cent years, deep learning-based techniques for pitch esti-
mation have surged to the forefront, with the convolutional 
approach CREPE earning its place as the current industry 
standard. In this paper, we introduce WAFFL, a novel and 
efficient machine learning method for estimating the fun-
damental frequency of monophonic vocal recordings. 
WAFFL differs from existing techniques by employing a 
model trained on labeled Mel-spectrogram frames of sin-
gle-voice singing excerpts. Unlike the leading methods 
CREPE and pYIN, which function entirely in the time do-
main, WAFFL is trained and operates on data in the fre-
quency domain. At its foundation, WAFFL utilizes a 
straightforward neural architecture centering on a multi-
layer perceptron (MLP). Our proposed training and data 
preprocessing strategy performed well in our test trials, 
and may prove generalizable for future research tasks in 
this field. We plan to offer a pretrained implementation of 
WAFFL as an open-access Python package to facilitate 
community experimentation. 

1. INTRODUCTION 

Pitch is a quality of musical sound wholly defined by hu-
man perception. Like frequency, pitch delineates sonic or-
der from low to high and is measured in Hz. Fundamental 
frequency (f0) refers to the first and lowest harmonic in the 
series of stacking harmonics that make up a single-voice 
sound. In scientific settings, pitch is commonly conflated 
with fundamental frequency, as these values often coincide 
[1]. Although pitch and fundamental frequency are sepa-
rate measurements and observing their distinctions can be 
important in the field of psychoacoustics, this paper will 
conform to the convention within pitch estimation and 
henceforth treat the terms as interchangeable [2]. 
     Estimating musical pitch has been a topic of interest in 
acoustics since 1967, when Noll introduced the cepstrum 
approach for fundamental frequency prediction [3]. In the 
decades since, a wide variety of techniques have been pro-
posed, building up to the handful of leading methods that 
are commonly used today. The YIN algorithm and its 
newer probabilistic version pYIN are at the forefront of 
computational approaches, and the convolutional method 
behind CREPE is the current vanguard of neural network- 

 
Figure 1. Mel-scaled spectrogram from MIR-1K dataset 
with our frame slicing displayed on the X-axis and the Mel 
filter bank displayed on the Y-axis. 
 
based techniques [4]. All of these pitch estimation systems 
pursue a common goal: to accurately extract the develop-
ment of a monophonic audio signal’s fundamental fre-
quency value as it unfolds over time [5]. The YIN algo-
rithm operates in the time domain, utilizing the autocorre-
lation function alongside a variety of error-filtering modi-
fications [6]. The pYIN method builds on this to calculate 
pitch probabilities for YIN outputs and select the best can-
didates using a Hidden Markov model [7]. CREPE also 
operates in the time domain, using a deep convolutional 
neural network to achieve state-of-the-art results [4]. 
     Our WAFFL method offers unique advantages by in-
troducing a new approach to pitch data preprocessing. We 
sought to reduce the training data resource load by con-
verting the training dataset of monophonic audio files into 
Mel-spectrograms, thus discarding signal phase infor-
mation and standardizing frequency resolution. The time 
series of each Mel-spectrogram is then broken into indi-
vidual frames matching a corresponding frequency label. 
Our shallow neural network is then trained on these data 
pairs. This process enables rapid inference from a rela-
tively small model. The resulting pitch estimation pipeline 
maps inputs to the same Mel-spectrogram space as the 
training data, iterates over the frames of the time series, 
and calculates predictions for each frame. Our training pro-
cess also infers voicing data from the training labels by 
recognizing frames with zero pitch values as unvoiced, as 
this is how both of our selected training datasets delineated 
unvoiced frames. 

2. METHOD 

2.1 Data Pre-Processing 

Our methodology for training WAFFL was to expose the 
model to isolated frames of Mel-scaled spectrogram data 
from monophonic audio recordings alongside their corre-
sponding fundamental frequency labels in Hz. We tested 
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two different datasets for training, in addition to training 
on both combined; these were the MIR-1k [8] and Vocad-
ito [9] datasets. Both datasets contain pitch-annotated au-
dio clips of individual people singing. In MIR-1k, the an-
notations are given as semitone values above C0, which 
we converted to Hz: 
 

𝑦"#$% = 440 ⋅ 2(,$-./01$234)/78 . (1) 
 

Spectrograms emerged as an appropriate choice for our 
model’s input data type, following our hypothesis that this 
format would be relatively lightweight in terms of file size, 
and also consistent with our goal for the machine learning 
model to interpret/infer pitch information. Mel-scaling 
was selected to calibrate the model to the perceptual curve 
of human hearing (i.e. pitch), consequently simplifying ad-
aptation to a uniform frequency axis. 
     The two datasets used for training have different peri-
ods for their frequency label annotations (320 samples at 
16kHz for MIR-1k and 256 samples at 44.1kHz for Vo-
cadito). In order to create Mel-spectrograms with stable di-
mensions (number of Mel filters by number of labels) for 
each training sample, we truncated the time-domain sig-
nals by the remainder of their length divided by the anno-
tation period for their respective dataset. This process was 
performed prior to generating the spectrogram data: 
 

𝑥:[𝑛] = 𝑥[0,𝑁 − (𝑁	mod	ℎ) − 1] . (2) 
 
     Next, we generated Mel-scaled spectrograms of each 
full-resolution sample with 128 Mel filters, to yield spec-
trogram data of dimensions 128	 × 	𝑛 (where n denotes 
the number of labels) using library functions from Librosa 
[10]. The spectrograms were created using the Short Time 
Fourier Transform (STFT): 
 

𝑋[𝑚, 𝑘] = ∑ 𝑥[𝑛 + 𝑚𝐻]O27
1PQ ⋅ 𝑤[𝑛] ⋅ 𝑒2T8UV1/O . (3) 

 
Mel-scaling was applied to the spectrograms as follows: 
 

fXYZ = 1127.01028 ⋅ log8( 1 + f/700 ) . (4) 
 
This order of operations allows for the maximum retention 
of frequency data resolution. We then compiled the sliced 
frames of each spectrogram and their corresponding 
ground-truth pitch labels for our preprocessed training da-
taset. This approach yielded training samples of dimen-
sions 128	 × 	1 paired with their fundamental frequency 
value labels in Hz. Our data preprocessing technique is rel-
atively efficient when compared alongside popular time-
domain machine learning techniques such as CREPE and 
pYIN, and may prove to be generalizable for other ma-
chine and deep learning audio tasks. Moreover, this ap-
proach also allows for new inputs to the trained model to 
have any length and sample rate, provided the model’s pre-
diction method is wrapped in a function that calls it in a 
loop iterating over the input data. 

2.2 Model Selection and Training 

We selected an MLP as the underlying model architecture 
for WAFFL. The Scikit-learn [11] MLP regressor was cho-
sen for its accessible implementation and usage. Future 
work could involve replication of this technique using 
deeper models or versions found in other machine learning 
libraries. The model was initialized with an input layer of 
128 neurons to match the 128 Mel filters used in the data 
preprocessing and the resulting dimensions of the training 
samples. A hidden layer was added with 12 neurons for 
dimensionality reduction. We selected this neuron count 
semi-arbitrarily, because there are 12 pitches per chro-
matic octave in Western music, and because 12 is roughly 
10% of the input dimension of 128. The output layer was 
a single node that predicts floating-point representations of 
pitch in Hz. The model trained on the pre-processed data 
and pitch labels, where each label corresponds to a single 
128-element vector of Mel-spectrogram magnitudes. 

2.3 Metrics 

Three models were created in total: one trained for each 
individual preprocessed dataset, and one trained on the two 
preprocessed datasets combined. Model evaluation was 
performed on the same dataset as training via a standard 
80/20 train-test-split, comparing against samples the 
model had not yet been exposed to. Evaluation metrics 
were gathered using the Python library mir_eval [12]. All 
metrics are adaptations of traditional F-scores that target 
different attributes of the predictions. Voicing Recall (VR) 
is defined as the portion of frames with non-zero pitch la-
bels correctly predicted as having a non-zero pitch, while 
Voicing False Alarm (VFA) is the portion of frames incor-
rectly predicted as having non-zero pitch. Raw Pitch Ac-
curacy (RPA) refers to the portion of frames correctly pre-
dicted within half a semitone of the labelled pitch in Hz, 
while Raw Chroma Accuracy (RCA) is the same metric 
mapped to a single octave of chroma. Overall Accuracy 
(OA) is an average of these metrics and represents the 
overall F-score. 

2.4 Evaluation 

The model that was trained on only the MIR-1k dataset 
vastly outperformed the others in every metric, in addition 
to performing the best during a round of subjective percep-
tual analysis after listening to output sonifications. We hy-
pothesize that the addition of new and more diverse train-
ing data (i.e. from the Vocadito dataset) worsened the 
model’s performance, making it excessively sensitive to 
small pitch fluctuations in its input signals. All models per-
formed well with regard to Voicing Recall and Voicing 
False Alarm, suggesting that the training data accurately 
captured the difference between voiced and unvoiced 
frames (i.e. zero vs. non-zero energy). The best model 
achieved an overall accuracy score of 0.673, which bearing 
in mind the lightweight, shallow neural network and rela-
tively low number of training samples (~6000 after prepro-
cessing) we believe to be a noteable achievement. 
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3. RESULTS 

The results obtained from the MIR-1k-trained WAFFL 
model are shown in Table 1 and graphed in Figure 2. Con-
sidering the approachable methodology of our prepro-
cessing and training technique, these results were largely 
promising, showing a voicing recall of 0.893 and an over-
all accuracy of 0.673. Though these results are generally 
lower than existing methods such as CREPE and pYIN 
(which achieved overall accuracy results of 0.874 and 
0.843 respectively when evaluated for the Vocadito da-
taset), the metrics derived from the MIR-1k-trained 
WAFFL model largely validate the use of Mel-spectro-
gram data as a training input for monophonic pitch estima-
tion. This satisfactory result may be due to properties of 
the MIR-1k dataset, such as its clear separation of lead vo-
cal and accompaniment tracks, lack of bleed, relatively 
large scale, and consistency of language, recording envi-
ronment, and performer type. 

 
Data VR VFA RPA RCA OA 

MIR-1K 0.893 0.005 0.584 0.586 0.673 
Vocadito 0.722 0.010 0.230 0.232 0.293 

Both 0.731 0.015 0.303 0.305 0.340 

Table 1. Comparison of mir_eval metrics across WAFFL 
models trained on each dataset. 

 

  
Figure 2. WAFFL MIR-1K model results. 

3.1 Dataset Comparison 

The evaluation of the WAFFL models and the way in 
which overall accuracy and other metrics were impacted 
by different training data further highlights the importance 
of dataset selection in the development of machine learn-
ing-based prediction models. While the model trained 
solely on the MIR-1k dataset performed well considering 
its specificity, all models that incorporated the Vocadito 
dataset were found to be significantly inferior across all 
measured scores. 
     There are many potential reasons for this decrease in 
key metrics, the most obvious of which is perhaps the da-
taset’s small size relative to MIR-1k, with Vocadito 
providing just 40 total excerpts of monophonic singing. It 
should perhaps not be surprising, then, that the model per-
formed poorly when trained on this dataset alone, as the 
dataset’s scale may limit its effectiveness in accurately es-
timating the fundamental frequency of novel audio data. 
This is despite Vocadito’s relative increase in both sample 

rate and time-stamp resolution, at an original 44.1 kHz and 
256 samples-per-label compared to the 16 kHz and 320 
samples-per-label offered by MIR-1k. 

 

 
Figure 3. WAFFL Vocadito model results. 

 

 
Figure 4. Results of the combined MIR-1K and Vocadito 
WAFFL model. 

3.2 Comparison to Existing Methods 

We conducted a prediction speed test by measuring the 
time required to generate output estimates for the entirety 
of Vocadito’s 40-track dataset, and subsequently calculat-
ing the mean processing time required for each set of out-
puts. Running on the non-optimized Intel i9 CPU via 
which the models were compared, WAFFL’s mean pro-
cessing time was just 0.95 seconds. CREPE required an 
average of 23.90 seconds for each track—a staggering la-
tency increase of over 2515% when compared to WAFFL. 
Our model also outperformed pYIN in terms of processing 
time, with the latter imposing a mean estimation delay of 
12.98 seconds for each Vocadito audio track. Indeed, it 
was only the computational method YIN—the most tradi-
tional of the compared approaches—that computed the 
output in less time, taking a mere 0.326 seconds on average 
to deliver an estimation. 
     Despite WAFFL’s subordinate scores on metrics such 
as overall accuracy, its adequate pitch estimation perfor-
mance combined with its vastly improved inference speed 
indicates that it may still prove useful, and that Mel-spec-
trogram-focused pitch estimation models such as WAFFL 
could merit further research. Though a more thorough 
speed comparison that takes into consideration the variety 
of hardware systems specifically optimized for such ma-
chine learning tasks is left for future work, our investiga-
tion underlines WAFFL’s efficacy as a potential candidate 
for low-latency monophonic pitch estimation tasks. 
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3.3 Subjective Evaluation 

Notwithstanding the lower overall accuracy of our 
WAFFL models when compared alongside existing ma-
chine learning-based methods, a subjective perceptual 
evaluation of a variety of resynthesized outputs from the 
WAFFL MIR-1k model found that these sonifications ac-
curately replicated the perceived pitch information con-
tained within the original recording. Pitch contours were 
predicted for randomly selected vocal recordings between 
10 and 30 seconds in length—limited as such so as to avoid 
listener fatigue—and then converted to audio by way of 
the mir_eval library’s sonify() function [12]. Congruent 
with the metrics generated during our objective analysis, 
our WAFFL model trained solely on the MIR-1k dataset 
was deemed best suited to faithfully recreate the original 
recording’s perceived melody contour. On the other hand, 
the model trained on the Vocadito dataset alone was found 
to provide the poorest sonified outputs, with ubiquitous 
perceptible frequency fluctuation errors undermining its 
general adherence to the pitch of the original audio. 
 

 
Figure 5. Inference output pitch contour from the WAFFL 
MIR-1K model. 

4. CONCLUSION 

In this paper, we presented WAFFL: a machine learning 
model for monophonic pitch estimation of vocal record-
ings. In doing so, we have validated the effectiveness of 
leveraging our novel approach of using Mel-spectrogram 
data representations to training fundamental frequency ex-
traction models. In spite of the limited data on which this 
model was trained, the early results are promising, achiev-
ing accuracy scores comparable to existing methods. It is 
the speed of this approach, however, that sets it apart from 
the state-of-the-art machine learning models. WAFFL re-
quires a fraction of the time to generate an output when 
compared to industry leaders CREPE and pYIN. Through 
future research, particularly into pre-processing methodol-
ogies or the use of WAFFL as a low-latency pitch estima-
tion tool, we hope that our model garners utilization in 
user-facing applications and on mobile/embedded devices. 
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